
-nR운․ Virginia Department of Rail and Public Transportation

SMART SCALE ROUND 5

Proposed Changes
October 19, 2021

COMMONWEALTH of VIRGINIA
Office of the
SECRETARY of TRANSPORTATION

SMART SCALE Overview

- Safety - reduce the number and rate of fatalities and severe injuries
- Congestion - reduce person hours of delay and increase person throughput
- Accessibility - increase access to jobs and travel options
- Economic Development - support economic development and improve goods movement
- Environmental Quality - improve air quality and avoid impacts to the natural environment
- Land Use - support and improve non-work accessibility

Scoring based on outcomes, not the size of the problem

Summary Round 5 Proposed Changes

- Environmental Quality Measures

- E. 1 (Air Quality)
- E. 2 (Impact to Natural and Cultural Resources)
- Round 2 change - address issue of projects with no other benefits getting funded by this measure
- Round 4 change - made measure subtractive
- Land Use Measure
- Cost Estimates

Environmental Measures

- CTB Member(s) Request
- Interest in enhancing E. 1 Quantify Greenhouse Gas (GHG) Emissions
- Increased Scrutiny on E. 2 measure as a negative measure
- Environmental Working Group Established in Early June
- District POCs, OIPI, VDOT CO Environmental
- Additional Support/Stakeholders
- Cambridge Systematics
- DEQ

Environmental E. 1 - Air Quality

1. Current Process/Methods

2. Potential Qualitative Improvements
3. Potential Quantitative Improvements

Round 4 Observations

- Intent of E. 1 Measure is to reduce Greenhouse Gas Emissions
- Can it be improved or benefits better quantified?

Strategies to Improve Air Quality and Reduce GHG

1. Reduce Vehicle Miles Traveled (VMT) / Increase Non-Single Occupancy Vehicle (Non-SOV) VMT
2. Reduce vehicle delay to reduce fuel use per mile
3. Technological change including improved vehicle efficiency, electrification, and using low carbon fuels
4. Reduce Impacts to Natural Resources

Current E. 1 (Air Quality) Overview

Potential of project to improve air quality and reduce greenhouse gas (GHG) emissions

Proposed Qualitative Improvements

- Increase Non- SOV Component
- Currently all points are totaled and multiplied by increase in all non-SOV users
- Results in points given credit based on users from other categories
- Propose multiplying by non-SOV increase for respective category - (eg Bike, Ped, transit...)
- Freight Component with Reduced Delay
- Non-SOV Users and Freight Component are not in the same unit
- Freight requires reduced delay greater than zero, but captures existing truck volumes
- Propose normalizing separately, and equal weight the two categories
- Propose scaling by delay reduction
- Special Accomodations Point Category
- Policy Guidelines are not clear on the Federal / State Level - Sale of Non-Food
- Federal Grant money is proposed

Example - Lafayette Boulevard Multimodal Improvements

Results Summary

Proposed Quantitative Calculate CO_{2} Offset

Use existing collected data for High Level Analysis

- Increase in non-SOV users - currently calculated for E. 1
- Hours of delay reduced - currently calculated for C. 2
- Trip Length - national averages, and SS analysis segment length (C.1/C.2)
- Emissions factors - average passenger car fuel efficiency
- Fuel use factor - from delay reduced (gallon/hour)

Two Parts

Non-SOV CO2 Offset + Reduced Truck Delay CO2 Offset

Proposed Quantitative Non-SOV CO 2 Offset

1. Increased Non-SOV VMT

- Transit and Park \& Ride Users - multiply new users by the analysis trip length
- Pedestrians - multiply total new users by 0.67 miles* *
- Bicyclists - multiply total new users by 3.54 miles*
*Average Person Trip Length

2. Increased Non-SOV VMT - Sum Above
3. Non-SOV CO2 Offset (Apply Fuel Efficiency and Emissions Factors)

$$
\text { Non-SOV VMT } \times \frac{1 \text { gallon gas }}{24 \text { miles }} \times \frac{8.9 \mathrm{~kg} \mathrm{CO}_{2}}{1 \text { gallon gas }}
$$

Proposed Quantitative
 Freight CO_{2} Offset

1. Reduced Truck Delay - Get Back to Vehicle Hours of Delay (VHD)

- Divide total Person-Hours of Delay (PHD) by 1.2 Person/Vehicle

2. Reduced Truck Delay - Heavy Vehicle Hours of Delay (HVHD)

- Multiply VHD by project weighted average truck percent

3. Heavy Vehicle CO_{2} Offset (Apply Gas \& Emissions Factors)

$$
\text { HVHD (hours) } \times \frac{0.44 \text { gallons }}{1 \text { hour } \times \frac{8.9 \mathrm{~kg} \mathrm{CO}_{2}}{1 \text { gallon gas }}, ~}
$$

Final Measure is sum of two values

1. Non-SOV CO2 Offset
2. Freight CO2 Offset

Example - Lafayette Boulevard Multimodal Improvements

Non-SOV CO2 Offset						
Factor	In App?	Supporting Information	Increased Users		Trip Length (miles)	VMT
Rail	X					
Bike		Route 208 PNR lot - 10 bicycle lockers and 10 covered bicycle parking spaces	0.0	X	3.54	$=0.0$
Pedestrian		2000 ft sidewalk on the eastside of Lafayette Blvd (Sheetz to Family Dollar)	22.0	X	0.67	$=14.7$
Park and Ride		Route 208 PnR Lot - Add Transit Stations, Lighting, Bicycle Lockers/Parking	VMT Sum	ed b	y Segment	$=122.8$
Bus		VRE Feeder Service and Bus Stop Improvements	VMT Sum	ed b	y Segment	$=200.9$
Non-SOV VMT 338.4						
Non-SOV CO_{2} Offiset (kg)			$\times \frac{1 \text { gallon gas }}{24 \text { miles }} \times \frac{8.9 \mathrm{~kg} \mathrm{CO}_{2}}{1 \text { gallon gas }}$			125.5

Freight CO_{2} Offset					
Total Delay Reduction (Person-Hours)	\div	Persons/Vehicle		X	\% Trucks
5.8	\div	1.2		X	0.13
Freight Delay Reduction (hours) 0.63					
			Freight CO_{2} Offset (kg)	$\frac{0.44 \text { gallons }}{1 \text { hour }} \times \frac{8.9 \mathrm{~kg} \mathrm{CO}_{2}}{1 \text { gallon gas }}$	2.46
Total CO_{2} Offset $\quad 128.0$					

Propose Combining Quantitative and Qualitative

Impacts to E. 1 Measure Top Scoring

Final Proposed E. 1 Score

- Weight Qualitative Method - 50\%
- Weight Quantitative Method - 50\%

Rank E. 1 Current	Rank E. 1 Proposed	Display ID	Project Title
1	5	6867	Route 208 Operational and Multimodal Improvements
2	1	7198	Intercity Rail Service Expansion along US-29 \& I-81 Corridors
3	7	6806	Rt 2 \& 17 Widening from City Line to Shannon Airport Area
4	8	6719	Lafayette Boulevard Multimodal Improvements
5	9	7076	Town of Bowling Green US 301/Chase Street
6	11	6738	Weyers Cave Road (Rt. 256) Turn Lane Project
7	3	6842	I-64 WB Widening (Exit 211 to Exit 205)
8	4	6822	Route 1 (Fraley Boulevard) Widening
9	31	6815	BRITE Pedestrian Improvements
10	14	6799	I-81/Route 8 (Exit 114) Park \& Ride Lot
M	Rank E. 1 Proposed	Display ID	Project Title
$n 9$	2	6948	Mount Vernon Trail North Enhancements
	6	6858	Upper King Street Multimodal Reconstruction
	10	6809	Rte 15 Leesburg Bypass Interchange with Edwards Ferry Road

E. 2 (Impact to Natural and Cultural Resources) - Overview

Potential of project to minimize impact on natural and cultural resources located within project buffer

E. 2 Process Improvements

- Impact Buffer Acres

- Proposed tiering approach
- Features selected
- Tier $1=30 \mathrm{ft}$
- Tier 2 = 1/8 mile
- Tier $3=1 / 4$ mile
- Sensitive Areas
- Environmental Division will review for validity every round

Examples

Project Feature	E.2 Tier
Road Diet	$\mathbf{1}$
Roadway Reconstruction/Realignment	$\mathbf{1}$
Shoulder Improvement(s)	$\mathbf{1}$
TDM Other	$\mathbf{1}$
Traffic Signal Modification	$\mathbf{1}$
Turn Lane Improvement(s)	$\mathbf{1}$
Widen Existing Lane(s) (No New Lanes)	$\mathbf{1}$
Construct/Expand Bus Facility	$\mathbf{2}$
Freight Rail improvements	$\mathbf{2}$
Improve Park and Ride Lot	$\mathbf{2}$
New Intercity Passenger Rail Station or Station Improvements	$\mathbf{2}$
New Park and Ride Lot	$\mathbf{2}$
New Station or Station Improvements	$\mathbf{2}$
Right-of-Way/Easements acquisition required	$\mathbf{2}$
Add New Through Lanes(s)	$\mathbf{3}$
Highway Other	$\mathbf{3}$
Improve/replace existing bridge(s)	$\mathbf{3}$
Managed Lane(s) (HOV/HOT/Shoulder)	$\mathbf{3}$
New Bridge	$\mathbf{3}$
New Interchange, Limited Access Facility	$\mathbf{3}$
New Interchange, Non-Limited Access Facility	$\mathbf{3}$
Rail Transit Other	$\mathbf{3}$
Roadway on New Alignment	$\mathbf{3}$

E. 2 Outcomes

- Improved Distribution

- Projects in Tier 1 (30' buffer) either improved in SMART SCALE rank or remained at the exact same rank
- Projects in Tier 2 (1/8th mile) projects on average changed by less than one position in SMART SCALE rank
- Projects in Tier 3 (1/4th mile) fell an average of 4 positions in SMART SCALE rank
- Statewide - only 2 projects impacted in funding scenario

Land Use

- Land Use has two components: Future Transportation Efficient Land Use (L.1) and Increase in Transportation Efficient Land Use (L.2)
- What they have in common is - the non-work accessibility, or the number of key non-work destinations that are accessible within a reasonable walking distance, scaled by population density

Round 4 Observations

- Concerns that 3 mile buffer is excessive to consider reasonable.
- Large component of score, should other Area Types be considered for Land Use?

Land Use

- Three Scenarios Tested
- Apply Land Use to all Area Types
- Weighting Changes for Type C \& D Considered
- Use a 1 Mile Buffer instead of 3 Mile Buffer
- 1 mile walk is closer to the average pedestrian trip length

Potential Weighting Adjustments

Existing						
Area Type	Congestion	Safety	Accessibility	Environment	Economic Development	Land Use
A	45\%	5\%	15\%	10\%	5\%	20\%
B	15\%	20\%	25\%	10\%	20\%	10\%
C	15\%	25\%	25\%	10\%	25\%	
D	10\%	30\%	15\%	10\%	35\%	

Proposed						
Area Type	Congestion	Safety	Accessibility	Environment	Economic Development	Land Use
A	45%	5%	15%	10%	5%	$\mathbf{2 0 \%}$
B	15%	20%	20%	10%	20%	15%
C	15%	25%	15%	10%	25%	10%
D	10%	30%	10%	10%	30%	10%

Cost Estimates

- August 2, 2021 VDOT Published Cost Estimating Manual and an associated Implementation Plan (IIM)
- Draft Cost Estimate Training Completed will be available in VDOT University
- VDOT L\&D will need to rollout a SMART SCALE Training Plan
- Working with Cost Estimation Office (Lead Mitch Ball)
- Consistent Message broadcasted through SMART SCALE platform
- Updated Estimation Tools
- Implementing Pre-Application and Full Application Consistency

Next Steps

- November
- Deeper Dive into Land Use
- Intake Public Comments
- December
- Seeking Action Round 5 Policy Changes
- Release Updated Technical Guide by end of year

Onilllll

Virginia Department of Rail and Public Transportation

COMMONWEALTH of VIRGINIA
Office of the
SECRETARY of TRANSPORTATION

Thank you.

Office of
INTERMODAL
Planning and Investment
=MVDB Motor Vehicle Dealer Board COMMONWEALTH OF VIRGINIA

- THE PORT OF
§ VIVGINA.
VDOT

VIRGINIA

