

• **DRPF**• Virginia Department of Rail and Public Transportation

COMMONWEALTH of VIRGINIA Office of the ______ SECRETARY of TRANSPORTATION

Transportation Performance Management Safety Measures

Nick Donohue Deputy Secretary of Transportation Margie Ray Performance Management Manager January 15, 2019

Safety Performance Management Measures and Targets

- Board challenged staff to develop a new rigorous data-driven methodology to establish targets
 - Understand how the system is working
 - Identify and examine trends
 - Determine the impact of current investments and strategies
 - Provide targets to Board
- Board will use information to determine degree to which current policies and investments are meeting goals

Safety Performance Management Refining Target Setting

Safety Performance Measures:

- Number of fatalities
- Number of severe injuries
- Rate of fatalities per 100M vehicle miles traveled
- Rate of severe injuries per 100M vehicle miles traveled
- Number of non-motorized fatalities and severe injuries

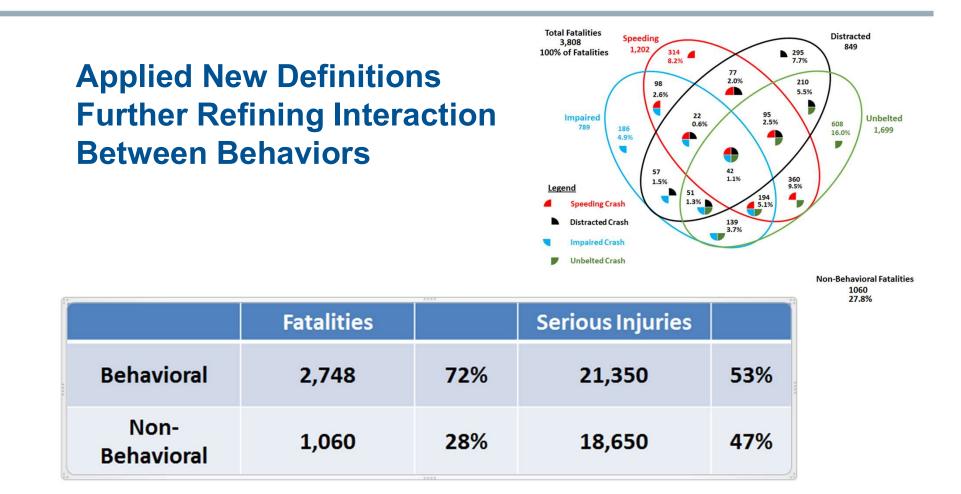
Safety Performance Management Refining Target Setting

Five steps to develop new target setting methods:

- 1. Determine crash factors and causes behavioral, infrastructure and the interaction
- 2. Determine degree of infrastructure improvements influence on behavioral crashes
- 3. Evaluate anticipated benefits of recent infrastructure projects
- 4. Analyze external factors to predict 2019 baseline severe crash safety measure counts
- 5. Combine the baseline predictions with project benefits to establish data-driven targets.

Step 1 - Crash Factors and Causes Refining Interaction of Behaviors (2013-2017)

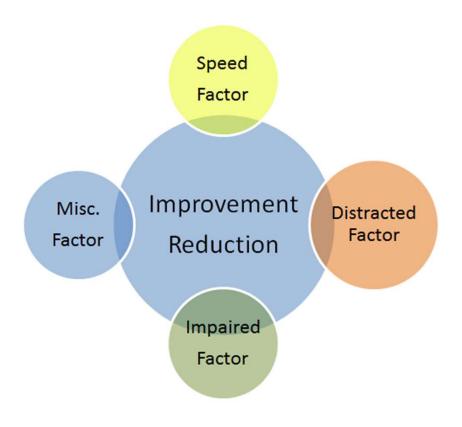
- Critical behaviors to address:
 - Impairment
 - Distracted
 - Speeding
 - Unbelted Occupants
- Refined definitions for Impairment, Distraction and Speeding due to variance in these behaviors



Defining Targeted Behaviors

- Based on new definitions, categorized Speeding levels and Distractions into high, medium, low and no effectiveness of the infrastructure improvements
- The effect (high, med, low) of each behavioral factor can be considered as a probability that the improvement expected crash reductions will be successful.
- In certain cases, the infrastructure improvement is presumed to have no impact in reducing crashes (i.e. obviously drunk, speeding > 20 mph over speed limit)

Results - Crash Causes and Factors Refined Interaction Injury Crashes


Results - Crash Causes and Factors Interaction of Behavioral Factor Effects

Expected improvement reduction for projects is defined by the Crash Modification Factors

CMF = 1 - % Reduction

The average reductions are adjusted by <u>all</u> the behaviors present for each crash.

Behavioral factors were multiplied for interaction of effects on expected average CMF reductions.

Step 2 - Assessment of Behavioral Factors on Infrastructure Improvements

- Conducted detailed assessment of 2,000 randomly selected fatal and serious injury crashes at intersections
- Stratified crashes by:
 - Severity (fatal or serious injury)
 - VDOT Construction District
 - Highway Functional Classification
- Determined potential effectiveness of countermeasures for various crash types when behavioral factors involved
- Developed template to quickly analyze potential improvements and identify opportunities for improvements at locations and utilized to determine expected reductions in recent projects

Step 3: Expected Benefits of Projects Analysis of Spot and Corridor Projects

- Reviewed 96 SMART SCALE and HSIP projects constructed or to be completed between January 2017 and March 2019
 - 20 SS projects = \$56.2 M
 - 76 HSIP* projects = \$272.2 M
- Project influence areas consistent with SMART SCALE safety scoring methodology
- Crash years 2010-2017

Projects	F+SI Crashes	F People	SI People	F Ped/Bike People	SI Ped/Bike People
96	1,098	138	1,272	5	47

* Several HSIP projects are larger corridor projects with a small portion of HSIP funds

Spot and Corridor Projects Expected Reductions

Description	F People	SI People	F Ped/Bike People	SI Ped/Bike People
2010-2017 Totals	138	1,272	5	47
Final Projection (w/ Factors)	128	1,169	4	43
Reduction	10 (1.3 / Yr)	103 (12.9 / Yr)	1 (0.13 / Yr)	4 (0.5 / Yr)
Percent of Total	7%	8%	16%	8%

Spot Example Project

- Route 620 at Route 1 Intersection
 Improvements (Spotsylvania County)
 - Add turn lanes
 - Add pedestrian signal heads, sidewalk, crosswalk, multi-use trail
 - Install intersection lighting
- Est. cost of \$22 million

Description	SI People	SI Ped/Bike People	
2010-2017 Totals	21	1	
Final Projection (w/ Factors)	15.0	0.2	
Reduction	6.0 (0.75 / Yr)	0.8 (0.13 / Yr)	
Percent of Total	29%	83%	

Step 3: Expected Benefits of Projects Analysis of Systemic HSIP Projects

- Low cost improvements systemically spread on network at intersections and curves or on the pavement
 - 29 HSIP projects = \$29.5 M
- HSIP projects constructed between January 2017 and March 2019
- Crash years 2010-2017

Projects	F+SI Crashes	F People	SI People	F Ped/Bike People	SI Ped/Bike People
29	2,062	224	2,329	24	73

Systemic Projects Expected Reductions

Description	F People	SI People	F Ped/Bike People	SI Ped/Bike People
2010-2017 Totals	224	2,255	24	73
Final Projection (w/ Factors)	183	1,807	20	60
Reduction	41 (5.1 / Yr)	448 (56 / Yr)	4 (0.5 / Yr)	13 (1.6 / Yr)
Percent of Total	18%	20%	17%	18%

Corridor Roadway Departure Systemic Project Example

Centerline Rumble Strips – Hampton Roads District 63.6 miles of roadway, average ADT of 2,380

Estimated cost of \$1.12M

Description	F People	SI People
2010-2017 Totals	16	47
Initial Projection (w/ Adjustment Factors)	12	28
Reduction	4 (0.5 / Yr)	19 (2.4 / Yr)
Percent of Total	25%	40%

Behavioral-Adj

Reduction

Step 3: All Projects Expected Reductions

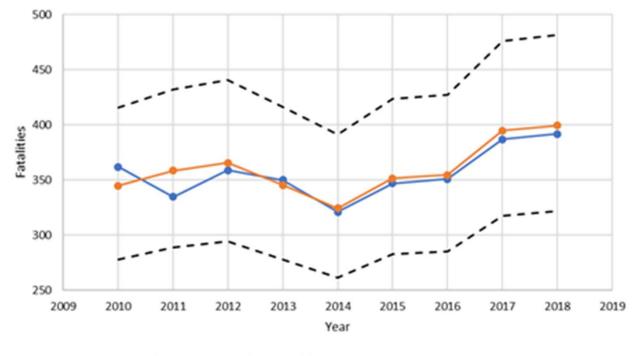
Description	F People	SI People	F Ped/Bike People	SI Ped/Bike People
Spot/Corridor (w/ Factors)	128	1,169	4	43
Reduction	10 (1.3 / Yr)	103 (12.9 / Yr)	1 (0.13 / Yr)	4 (0.5 / Yr)
Systemic (w/ Factors)	183	1,807	20	60
Reduction	41 (5.1 / Yr)	448 (56 / Yr)	4 (0.5 / Yr)	13 (1.6 / Yr)
Total Expected Reductions	51 (6.4 / Yr)	551 (68.9 / Yr)	5 (0.63 / Yr)	17 (2.1 / Yr)

Step 4: Analyze External Factors to Predict 2019 Baseline

Assessed models for Fatalities and Serious Injuries, using combinations of the following external risk factors:

Statewide Risk Factors

- Annual alcohol consumption
 - Liquor licenses by type per district
- Annual GDP


District Risk Factors

- Urban and Rural VMT
- Labor Force by age cohort
- Unemployed by age cohort (and rate of Emp)
- Licensed Drivers by age cohort
- Median Household Income by age cohort
- Total Population by age cohort
- Age of Titled Vehicles (2 year only)
- Weather Influences (Avg Precipitation, Snowfall, Temperature)

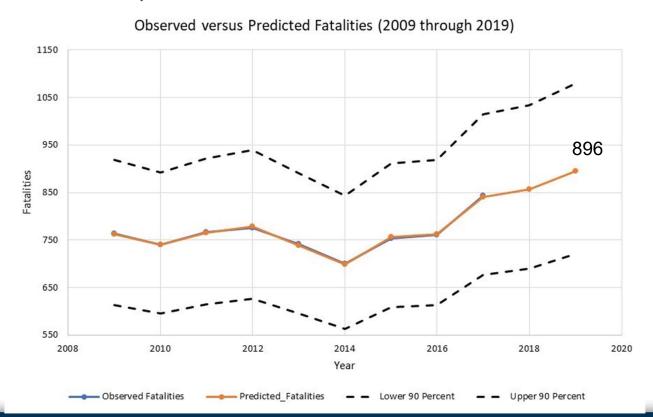
Fatality Model Validation

Predicted versus Observed Fatalities by Year (January through June only - 2018)

Absolute and percent differences are acceptable and values are within 90 percent confidence limits.

Observed Fatalities ---- Upper 90 Percent --- Upper 90 Percent

Findings from Model Development and Validation


- Local, collector and minor arterial proportion of VMT increases severe crashes
- Increasing young population (15-24) increases severe crashes

- Snowfall in month decreases severe crashes
- Increasing rural VMT decreases non-motorized severe crashes

Baseline 2019 Fatality Baseline Prediction

Predicting an increase in 2018 and 2019, following recent trends, to 896 fatalities

Step 5: Results - 2019 Data-Driven Targets

Combining the baseline predictions with the expected project benefits to establish data-driven targets

Description	F People	F Rate	SI People	SI Rate	F & SI Ped/Bike People
2019 Model Target	896	1.02	7650	8.69	750
Expected Project Reductions	6.4		68.9		2.73
Revised 2019 Targets	890		7581		747 🕇
Current CTB Approved Targets	840	0.94	7689	8.75	714

Key Findings

- Most external factors show increasing trends in fatalities
- Systemic safety projects provide significant expected benefits in reducing fatalities and serious injuries
- Distracted driving plays a significant role in the increase in fatalities
- While both the younger and older drivers saw increases in crashes, older drivers are a growing demographic

Next Steps

- Continue to evaluate project investments for consideration of changes and modifications to current proposed projects included in SYIP and future investment strategies
- Continue to analyze impact of behavioral programs
 and other external risk factors
- Use prediction model approach and update for observed 2018 results, future baseline conditions and development of 2020 targets
- Present proposed 2020 targets for CTB adoption -Spring 2019