

State of Good Repair Prioritization

April 19, 2016

Garrett Moore Chief Engineer

STATE OF GOOD REPAIR as of July 1, 2015

9 VDOT Districts

- And - C

86 Localities maintain system roadways

Bridges

National Bridge Inventory **↓ 13,467** 889 VDOT Structurally Deficient National Bridge Inventory

amount of needs **\$3.1 Billion**

Pavements

VDOT maintained lane miles (All Systems) over 127,000

over Locally 30,000 maintained lane miles

27,100

VDOT maintained deteriorated Interstate and Primary lane miles

VDOT maintained deteriorated Interstate *amount of needs* \$270 Million **VDOT** maintained deteriorated Primary

Locally-Owned Structurally Deficient

National Bridge Inventory

amount of needs \$609 Million

amount of needs **\$756 Million**

3,610

Locally maintained deteriorated primary extension lanes miles

amount of needs \$409 Million

State of Good Repair Prioritization Process Schedule

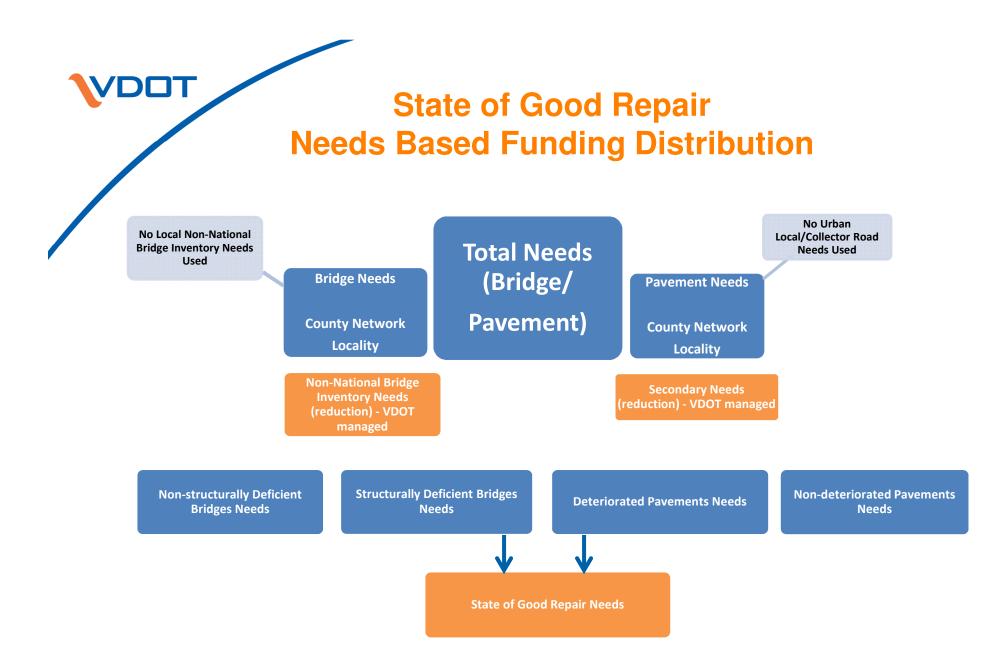
Description	Date				
Prepare Draft Prioritization Process Internally	7/2015 to present				
Provide Draft Prioritization Process to Local Stakeholder Group for Feedback and Comment	3/25/2016				
Provide Draft Prioritization Process to CTB	4/19/2016				
CTB Action	5/18/2016				
Prioritization Effective	7/1/2016				
Continued Outreach on Approved Prioritization	7/1/2016				

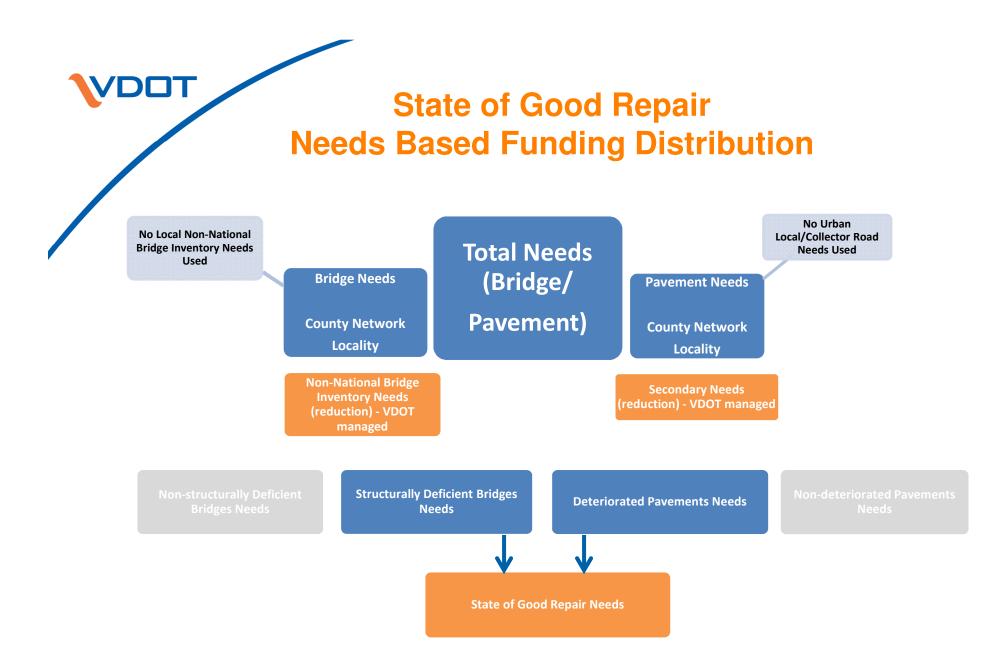
State of Good Repair Requirements § 33.2-369(B) and (C)

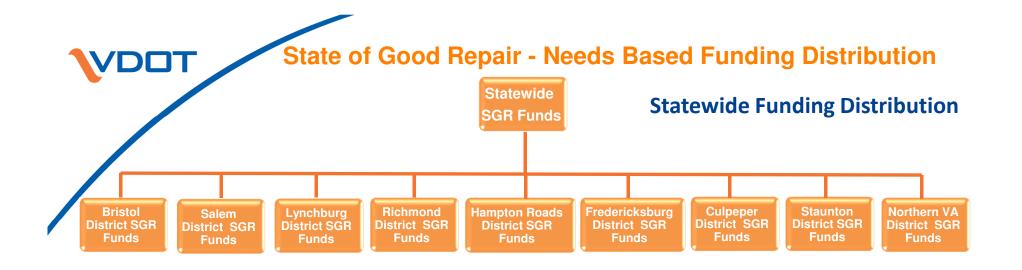
VDOT

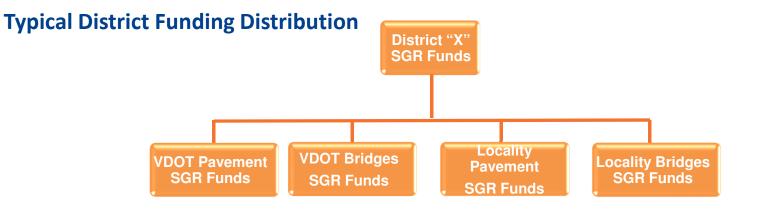
Description	Pavement	Bridge				
Purpose	Reconstruction/Rehabilitation (Deteriorated)	Reconstruction/Replacement (Structurally Deficient)				
System	Interstate/Primary/Primary Extensions	All Systems (VDOT and Locally Maintained)				
Priority Consideration*	Mileage, Condition, Costs	Number, Condition, Costs				
Distribution	All nine construc Based on Min 5.5% and Max	needs				
Waivers	Key Project - extraordinary circumstances only - cap can be waive					
	20% - Secondary Pavements (if VDOT secondary target not met)	N/A				

*More priority items are considered and explained later


State of Good Repair Definition VDOT's Internal


For a project to receive State of Good Repair funds, all three tests need to be met


Tests	Pavement	Bridge			
1	Improves to fair or better status	Removes from structurally deficient status			
2	Meets definition of pavement rehabilitation and reconstruction in Federal Highway Administration's memo dated 9/12/2005 (see link below)	Meets definition of bridge rehabilitation and replacement in Federal Highway Administration's Bridge Preservation Guide dated August 2011 (see link below)			
3	Adds or rest	tores strength			
FHWA Memo Links	<u>FHWA's Memo – September 12, 2005 -</u> <u>Pavement Preservation Definitions</u> <u>FHWA's Memo - February 25, 2016 - Pavement</u> <u>Preservation</u>	<u>FHWA's Bridge Preservation Guide – August 2011</u> <u>– Maintaining a State of Good Repair Using Cost</u> <u>Effective Investment Strategies</u>			


State of Good Repair – Prioritization

Requirement	RequirementStatuteReference		Bridge		
Implementation Date	Chapter 684 Enactment 2	July 1, 2016			
		Mileage	Number		
State Statute	§ 33.2-369(B)	Condition	Condition		
		Cost	Cost		
Federal Statute	MAP-21/FAST ACT	Asset Ma	nagement Plan		
VDOT P	ractice	Traffic Volumes	Importance to Users		
		Condition	Structure Capacity		

Pavement Prioritization

Data Used

- Pavement Distresses and Roughness
- Average Annual Daily Traffic, Truck Traffic Volume
- Strength of Pavement Layers and Subgrade
- Last Maintenance Type and History
- Distribution based on costs
- Eligible lane miles will be determined based on needs through a multi-constraint optimization process
- Decision matrices are used to generate recommended treatments
- VDOT publish target lane miles by district and system
- Localities similar to primary extension process
- November 2016, § 33.2-232 Annual Report item 5 requires a prioritized list of needs for pavement and bridges.

Bridge Prioritization

VDOT

	Bric	THE AND				
Factor	Factor Weight	Data Used				
Condition	25%	Bridge Safety Inspections				
Importance of Bridge to Users	30%	Traffic, Truck Traffic, Detour, Highway System, Proximity to Critical Facilities				
Cost Effectiveness	20%	Bridge Management System				
Risk	15%	Fracture Critical, Scour, Fatigue Prone Details and Seismic Vulnerability				
Structure Capacity	10%	Posting and Clearances				

Tig 81 0 0 1

Prioritization Process – How Does It Work?

- **Pavements**
 - VDOT Lane Miles
 - Localities similar to primary extension process
- Bridges

- Two prioritized lists per district for structurally deficient bridges
 - VDOT
 - Locality
- May skip structures in list? Why?
 - Lots of reasons
 - Examples
 - Cost of work
 - 1st ranked \$2B
 - 2nd ranked \$20M
 - Economy of Scale
 - Maybe the contract prices are better for two structures such as 1st rank structure and 6th rank structure are cheaper to contract together
 - Maintenance of Traffic
 - Interstate 95 bridges
 - · Deficiency addressed with maintenance funds or other funds

State of Good Repair Proposed Process

State of Good Repair – Preliminary Percentage by District

District	FY 2017 (Based on previously		VDOT		Localities			
	proposed distribution)	Pavement	Bridge	Total	Pavement	Bridge	Total	
Bristol	11.7%	21%	64%	85%	2%	13%	15%	
Culpeper	6.0%	25%	45%	45% 70%		27%	30%	
Fredericksburg	12.1%	18%	77%	95%	2%	3%	5%	
Hampton Roads	14.8%	7%	38%	45%	25%	30%	55%	
Lynchburg	7.6%	29%	63%	92%	5%	3%	8%	
Northern Virginia	10.6%	27%	61%	88%	11%	1%	12%	
Richmond	17.4%	25%	65%	90%	4%	6%	10%	
Salem	12.1%	21%	67%	88%	3%	9%	12%	
Staunton	7.9%	13%	76%	89%	4%	7%	11%	

State of Good Repair – Scoring Process – Pavement (Locality)

- Applications accepted along with the Primary Extension Paving Program
- Accept applications on an annual basis to support pavement overlay, rehabilitation, or reconstruction projects
 - Maximum request of \$1M per locality, per year
 - Roadway must have Critical Condition Index rating of 60 or less
 - Projects must be advertised within 6 months of allocation. Projects that are selected and do not meet this criteria may be subject to deallocation.
 - Maintenance of Effort Certification funding supplements, not replaces, the current level of funding/level of effort on the part of the locality
- Prioritize projects for funding based on technical score that considers pavement condition, traffic volume, and prior expenditures
 - Pavement Condition (CCI) 45%
 - On the National Highway System (NHS) 10%
 - Traffic Volume 30%

DOT

- Prior Expenditures 15%
- Requires regular collection of pavement condition data on the locally maintained primary extensions.

State of Good Repair – Scoring Process Bridges (Localities)

Annual basis for selection of bridge rehabilitation, or reconstruction projects

- Bridge must be structurally deficient
- National Bridge Inventory Only

DOT

- Proposed work must take bridge out of structurally deficient status
- Localities must be current on bridge inspections
- Projects receiving funding under this program must initiate the Preliminary Engineering or the Construction Phase within 24 months of award of funding or become subject to deallocation
- Selection of projects for funding considers bridge prioritization and cost effectiveness

Locality Bridge Ranking Example

	State of Good Repair - Locality Bridge Ranking Example														
		Va	riabl	es		System-Level Values				Final Values After Scoring					
Bridge #	0.30	0.25	0.15	0.10	0.20	Initial	Initial	System Level	Estimate for	Estimated Total	Funding	0.20 Cost-		Final	Final
"	IF	CF	RF	SCF	CEF	Score		Recommended Scope	Recommen ded Scope	Replacement Cost	Request	Effective ness Factor	Final Scope	Score	
18399	0.99	0.82	0.10	0.85	0.00	0.60	1	Replace Superstructure	\$6,675,231	\$13,014,024	\$5,526,000	0.45	Replace Superstructure	0.69	1
16020	0.95	0.90	0.10	0.55	0.00	0.58	2	Major Rehabilitation	\$1,652,651	\$15,034,241	\$13,542,000	0.00	Bridge Replacement w/o Added Capacity	0.58	6
2466	0.95	0.98	0.00	0.29	0.00	0.56	3	Rehabilitate Culvert	\$378,938	\$769,496	\$769,496	0.00	Replace Culvert	0.56	7
17087	0.77	0.83	0.00	0.36	0.00	0.47	4	Replace Superstructure	\$308,190	\$1,040,226	\$312,524	0.70	Replace Superstructure	0.61	4
5275	0.87	0.54	0.00	0.64	0.00	0.46	5	Replace Superstructure	\$257,366	\$924,388	\$423,888	0.38	Replace Superstructure	0.54	8
8204	0.85	0.82	0.00	0.00	0.00	0.46	6	Major Rehabilitation	\$280,579	\$3,435,758	\$3,435,758	0.00	Bridge Replacement w/o Added Capacity	0.46	10
18419	0.98	0.60	0.10	0.00	0.00	0.46	7	Replace Deck	\$1,949,697	\$8,663,145	\$2,056,240	0.83	Replace Deck	0.62	3
16384	0.30	0.97	0.75	0.00	0.00	0.45	8	Major Rehabilitation	\$67,619	\$837,123	\$112,000	1.00	Major Rehabilitation	0.65	2
18724	0.89	0.55	0.00	0.19	0.00	0.42	9	Replace Bridge	\$4,957,098	\$4,957,098	\$4,957,098	0.00	Bridge Rehab w/o Added Capacity	0.42	11
2439	0.79	0.48	0.00	0.59	0.00	0.42	10	Replace Bridge	\$2,179,301	\$2,179,301	\$2,179,301	0.00	Bridge Replacement w/o Added Capacity	0.42	12
10335	0.60	0.70	0.00	0.52	0.00	0.41	11	Replace Bridge	\$335,158	\$335,158	\$123,248	0.56	Replace Superstructure	0.52	9
17878	0.52	0.98	0.00	0.00	0.00	0.40	12	Major Repair	\$363,855	\$3,678,246	\$429,036	1.00	Repair and Preserve Structure	0.60	5

State of Good Repair Prioritization

April 19, 2016

Garrett Moore Chief Engineer